2009年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2009

学科試験 問題

EXAMINATION QUESTIONS

(高等専門学校留学生)

COLLEGE OF TECHNOLOGY STUDENTS

数 学

MATHEMATICS

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

MATHEMATICS

Nationality	No.
	(Please print full name, underlining family name)
Name	

	(2009
Marks	

1 Fill in the blanks with correct numbers or expressions.

1	ì	Solve	the	equation	$16^{x} - 4$	1x —	2 =	0
Τ)	Some	une	equation	10 -	1 —	4	v,

2) Solve the equation $\sin x + 2\cos^2 x = 1$, $(0 \le x < 2\pi)$.

3) Solve the inequality $x + \frac{1}{x} < \frac{1}{2}(7-x)$.

4) Solve the inequality $\log_2(x+2) < 2$.

5) A number sequence $\{a_n\}$, $(n = 1, 2, 3, \cdots)$ satisfies the following conditions. Express a_n as a function of n.

$$3a_{n+1}=2a_n+1$$
, $(n=1,2,3,\cdots)$, $a_1=2$.

6) Let $f(x) = \cos x$ and $g(x) = \sin x$. Calculate

$$\lim_{h \to 0} \frac{f(x-2h) - f(x+h)}{g(x+3h) - g(x-h)}$$

7) Differentiate the function $e^{x \sin x}$.	
8) Calculate $\int_{1/e}^{e} \log_{e} x \ dx$.	
9) In a single toss of two dice, find the probability	that the product of the two
numbers is greater than their sum.	
	21
10) Find the real value of a such that the coefficient of $\left(ax^2 - \frac{1}{ax}\right)^9$.	of x^9 is $\frac{21}{2}$ in the expansion
(ux)	
11) Let A and B be the points (2,0,1) and (0,1,2), re	spectively. Find the point P
on the line through A and B such that $\overrightarrow{OP} \perp \overrightarrow{AB}$.	
12) Let α and β be non-real roots of the equation $\alpha^2 + \beta^2$.	$x^3 = 8$. Find the value of

- 2 Let $A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$, $X = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $Z = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.
 - 1) Find the value of a which satisfies AX = aX.

2) Find the value of b which satisfies AY = bY.

3) Find the values of c and d which satisfy Z = cX + dY.

4) Calculate $A^{n}Z$.

- 3 Let k be a positive constant, $f(x) = |x^2 k^2|$ and $I(k) = \int_{-1}^1 f(x) dx$.
 - 1) Sketch the graph of the function y = f(x).

2) Suppose k < 1. Express I(k) as a function of k.

3) Suppose k > 1. Express I(k) as a function of k.

4) Find the minimum value of I(k) and the value of k which minimizes I(k).